
J. App?,. Maths Mechs, Vol. 55, No. 3, PP. 407-415, 1991 0021-8928/91 $15.00+0.00 
Printed in Great Britain 01992 Pergamon Press Ltd 

ON THREE-DIMENSIONAL EFFECTS NEAR THE VERTEX OF A CRACK IN A THIN PLATE* 

S.A. NAZAPQV 

The influence of the face profile of a crack on the stress-strain state 
of a thin plate is discussed. A three-dimensional boundary layer 
appears in the immediate neighbourhood of the crack ends, while linear 
combinations of special singular solutions of the generalized 
plante-stress state serve as asymptotic correction terms far from the 
ends of the crack. The energy-balance formula for crack propagation is 
sharpened. Formulations of two-dimensional problems which include two 
asymptotic terms are indicated, (and in particular, the idea of an 
effective plane-projected crack length is introduced). 

1. Statement of the problem and preliminaries. Let Go be a domain in the plane Ra, 
bounded by a simple smooth closed contour r and containing an interval M = {Y E R': gl = 0, 
1 y, 1 Q I}, while Gob = Go x (--'/&, I/&) is a plate of small relative thickness h (all coordi- 
nates are dimensionless), consisting of an elastic material with Lame constants h and u. By 
d we denote an even smooth non-negative function on [-1/1, r/J and introduce a set M" zz 

(5 = (y! z) E R': y, = o, 1 I 1 < ‘/&, I y1 I < 1 + M (h-W) which is a crack in G,,", the function 
d describing the shape of the end zones of the crack. We denote thecracked plate by G" = 

G," \ ikf" and assume that there are no body forces, the upper and lower faces Zkh of the 
plate and the edges M*h of the crack are stress-free, while strain is induced by a self- 
balancing loading p applied to the edge surface i"h of the plate and having the form P (4 = 
(P’ (Yh Oh where p’ = (pl, pl). The displacement vector u = (~~,&,a,) is the solution of the 
boundary-value problem 

L (Vx) u(x) = pV,.V,u (x) + (h + p)V,V,.u (x) = 0, x E Gh 

a@) (u; 5) = 0, z E Zfh 

a@) (u; x) = 0, x E ltf*n; oc”) (u; z) = p (x), x E rh 

(VI = grad, o(j) = m(J), of”) = on, n = (n’, 0)) 

(1.1) 

(1.2) 

(1.3) 

The dot denotes the scalar product, U(U) is the three-dimensional stress tensor, &I 
is the unit vector in R*, and n' is the external unit normal vector to the boundary of the 
domain G, c R'. 

It is well-known that the solution u of problem (l.l)-(1.3) can be approximated to some 
degree of accuracy by the solution 3 = (v,O, vzo) of the generalized plane-stress state 
problem 

L' (V,) L+' (Y) = PV,.V,fl (Y) +(a'+ u)V,V,.@ (y) = 0, y E G= 
Go\M 

z@) (v”; y) = 0, y E MTt; @) (& Y) = P’ (Y), Y E r 

(V, =, (W& a&/J, ,h’ = 2J.p (h + 2p)--‘, 9) = zn’, ,I(*) = (Tla, r,,)) 

(1.4) 

(1.5) 

Here 'r(9) is the two-dimensional stress tensor (with constants h' and u). 
In this section we shall only formulate an exact error estimate for the solution u of 

the problem of the stress-strain state of the plate G," without the crack (the load being 
as before). We put Vo (2, A) = D (h, z, 8,) I+’ (Y), where D is a (3x2)-matrix differential operator 
defined by 

D (h, z, V,) v = (v, 0) - h [h + 2p1-’ zdW,.v + ‘/,A [A + 2~1-1 [z’ - 
‘l,*h’l (V,V,* v, 0) 

(W 

The components of the corresponding three-dimensional stress tensor are found from the 
formulae 
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UJk (p) = 'Jk (fl) + ‘i,h (A + 2p)-’ b” - ‘/,&‘) ZJk (V,v,‘d) 
uJ* (p) = 0 (j, k = 1, 2) UJS (pm) = 0 

(1.7) 

We assume that p1,p8 E W;l*(I’). Then the solution d of problem (1.4), (1.5) in the 
domain Go (without the crack M the first boundary condition in (1.5) is absent) belongs to 
W,' (Go). Using the results of /l-3/ we obtain the inequality 

Ii UJ - vJ” 1) + h-‘ii % - v,’ 11 + 11 (d + h) 0 (u - p) II < Ch”’ (1.8) 

Here II * 11 is the norm in L, (Gob), d (z) = dist (y, lJ and the constant does not depend 
on k. Furthermore, it is assumed that the vectors u and P are normalized by identical 
conditions which remove the arbitrariness in the choice of rigid displacement. (In particular, 
4 is an odd function of tJ. As in /3/, by requiring extra smoothness of the vector p’ rme 
can obtain estimates for the difference u-V" in weighted Hglder classes. 

The solution d of problem (1.41, (1.5) in the domain with a crack has an expansion 

U" (z) = c" + TX (&@' (cp) + &'P (cp)) + (b,"s, + b,‘$, - b,?zl - (1.9) 
b,Oh’ [h’ + 2pl-1 2,) + r”* (k,r’ (A+ k,r’ (cp)) + 0 (r*) (r- 0) 

(@,’ (cp), @$ (cp)) = (4~)~ (2+x ([2x’ - 11 co9 Vscp - cos Y,cp, sin Y,cp - (1.10) 
(2x' + 11 sin '/*cp), (@,t (I& mq* (cp)) = (4~)~’ (2n)-5 (3sin Y,v - 

[2x' - 11 sin '/,cp, 3~0s Yzcp - [2x' + 11 cos V,cp) 

(r,l (cP), rol ((P)) = (12p)-i(2n)-x (co~~i2(p + (2%’ - 31 cos vzcp, 

-sin%cp + Bx’ + 31 sin Y&, (r,’ (q~), ro* (cp)) = (12$' (2n)-n. 
(5sinY,v + [2x' - 3lsin Vz'p, 5~0s Vecp - [2x' + 31~0s V,cp) 

(P = (c lo, c,O), x' = (h' + 3~) (L' + /L)-' = (5h + 6~) (311 + 2p)-') 

Here cJo and bJO are certain constants, (r* (P) are polar coordinates centred on (1, O), 
qE(--n,n); Kl and K, are stress intensity coefficients (SICs), and k, and k, are the 
coefficients of the non-leading singular terms. There is a similar representation in the 
neighbourhood of the other vertex. (From now on we will use the notation (r+,&, KJ* etc.) 
We note that for the SICs we have the formulae /4, 5/ 

(1.11) 

Here the 5' are weight functions, solutions of the homogeneous (p’ = 0) problem (1.4), 
(1.5), bounded everywhere except at the point y = (l,O), and with asymptotic expansions 

f’(x)=r-KyJ((p) + k~,lcJkrx@k((p) + o(r) (r-0) (1.12) 

(Y,l (cp), Y,$ (cp)) = [x' + 11-l (8n)-5 (3 cos Vz'p - [2x' + 11 00s */*/29, (1.13) 
- 3sin Vzcp + 12x' + 11 sin “/&, (Y,* (cp), YY,* (cp)) = Lx’ + 

11-l (8~)~s (-sin '/a~ +[2x' +Ilsiny/2(p, -COS l/z’p $ [2x’- 
11 cos “/#) 

The matrix C, composed of the factors Cjk in the expansions (l-12), depends on G,h 
and 11 and is symmetric. (For a boundary crack this matrix is positive-definite /6/, but here 
this property could be absent). 

Returning to the discussion of the behaviour of the solution of problem (l.l)-(1.3) as 
h - 0, we emphasise that because of the O(rX) singularities in representations (1.9) the 
quantities (1.6) cannot serve as asymptotic approximations: the functions (1.7) are not, in 
general, square-integrable in Gh. The aim of this paper is to construct a global asymptotic 
expansion of the solution; as is usual in similar situations, it is necessary to investigate 
a boundary layer. 

2. Model boundary tayer problem. We denote by I? the layer {q E RY: lqs I<‘/J, and 
by N the set {?:Q = 0, I XJ% I gVp, Q< cl (9~)). The domain II = II0 \ A' is obtained from the 
cracked plate Gh if we introduced "stretched" variables 9 = (h-’ (y, - I), h-'y,, h-'z) and 
formally go to h =O. The boundary layer that appears near the ends of the cut M” is 
described with the help of special solutions UJ of the homogeneous elasticity theory problem 

L(V,) Wj(a) = 0, n E n; a(*] (d; q) = 0, q E Ni (2.1) 
c+‘) (wj; a) = 0, 9 E n, = {q : ns = H,) \ h’ 
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This boundary layer has the form h~(K,FV((q)-/- KIV(q)), while from (1.9) and the 
matching conditions /7/ the solutions WJ are governed by the relations 

Wkj (q) = r,,~cDf (q~,,) + o @,,A), k = 1, 2, W,j (q) = o (r$) 

(h -+ ml 

(2.2) 

Here (5, 91) are polar coordinates corresponding to the two-dimensional Cartesian 
coordinates q' = (qr, qz). Using the symmetry of the domain II with respect to the GO% 
plane, we obtain, in accordance with /a/, the more-accurate representation 

W' (q) =D(% qs, S/S+, S/a,) {rrl"@' (cprl) +cj (d) r,-W'P' (%)} + (2.3) 
0 (TV?) (rrl + m) 

In (2.3) D is the operator in (1.6), the cJ @) are quantities depending on p,h and 
the shape of the end of the cut N (the function d). 

Let (p,,3,) be polar coordinates in the plane through the point q = (d(qJ),O,qs) and 
perpendicular to the arc T = {q:qs = 0, 1~s 1 <'/a, q1 = a(%)}, with IO, I < n and I q3 I < 1/z. 
Near the face !l' of the crack N the solutions of problems (2.1), (2.2) can be expanded as 

Here ecm) is a unit vector in RJ, @,j = (D,:, Q),,j, 0), j = 1, 2 are the angular dependences 
given by formulae (1.10) with x' replaced by x = 0. + 31L) (h + IL)_'; ~~8 (e) = (0, 0, p-1 (2s)-s 
sin 1/z@; pm and tm are smooth functions on (--I/,, 'I,), and 6 is an arbitrary positive 
number. The residue estimate in (2.4) and the behaviour of the functions $,,,, t,,, as q3+t1/, 
are governed by the fact that the points P*=(d(V,),O, _tl!J are polyhedron vertex type 
singularities for the boundary an. Re A correspondingly denotes the smallest positive real 
part of the degree of homogeneity (in terms of distance from p+) of the solution of the 
three-dimensional elasticity theory problem in the domain B = {z E R? za < I/*} \{z: z1 < 
8 ('1,) (z.3 ---r/1, 53 = O)), in the half-space with an angularly-shaped crack. Such indices A(a,v) 
were computed in /9, lo/. They depend on the angle a = arctg d' (I/*) $- '/$c of the crack 
aperture and on Poisson's ratio v =I/*(3 -x), with ReA(a,v)> 0, while the function a+ 
A (a, v) is continuous in [O, nl and h(O,v) Y 0, A(n,v) = 1 (see e.g. /ll/). Because the 
asymptotic behaviour of the vector function u' for q+ P* is governed by the indices a(a,v) 
(or more precisely, the cited solutions of the three-dimensional problem), the derivatives 
of the functions fl,,, and tm in general become infinite at R,q = fll). 

The estimates 

(2.5) 

will be used below. 
We now consider the differences in the powers of the quantities '1, - P’? being the 

distances in T from the points Pf. In the first of the estimates (2.5) account is taken of 
the fact that there are rigid translational displacements in the asymptotic expansion of wj 
near P+ and it is they which govern the behaviour of &,(qJ as *I~+&'/,. The 0, differen- 
tiation eliminates these terms from the expansion and the leading term becomes the derivative 
of the homogeneous solution in the polyhedron E, which in spherical coordinates (P+* e+> V+) 
with centre P, has the form 

c+P$(asv)r (e,, o+), C+ = coast (2.6) 

The angular part r is the solution of a boundary-value problem in the domain Qa, cut 
out of the unit sphere S" by the polyhedron 8. The domain p is a hemisphere with a 
distant arc of a great circle, and three angular points are situated on its boundary aP,: 
one of the points (denoted by Q) is the vertex of a one-dimensional crack, while smooth arcs 
of the contour 80, meet at a right at the other two points. One can verify that the 
asymptotic expansion of the vector function T in a small neighbourhood of the point Q, to an 
accuracy of O(a), where d is the distance on the sphere from Q, is identical with the 
similar asymptotic expansion near the vertex of the crack in the plane and antiplane problems 
of elasticity theory. Hence solution (2.6) contributes to each term of the expansion (2.4) 
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near the edge T. In other words, we have the relation (given certain additional conditions) 

8, (ss) = s:* + Cf et* P/r- %a)* + 0 (P/4-3)*) (sr - *va) 

This relation also reduces to the second of the estimates (2.5). The halving of the 
power in the estimates for t, is associated with the fact that p+-p+dand means that the O(pF) 
part of the O(p+*)singularity of function(2.6)at the edge is already accounted for in formula 
(2.4)itself. Finally,the angular part of (2.6) depends polynomially on lnp, when the spectral 
problem in 62, has an adjoint vector, hence an arbitrary positive number 6 is introduced 
into (2.4) and (2.5). 

The mathematical jusitification of these facts is given in /12/. 
We will derive an identity for the function k,. With this aim we note that the 

derivative a,W’ z aWj/i3q, satisfies equalities (2.1), while relation (2.2) takes the follow- 
ing form (compare with the discussions in /6/): 

a,Wj (q) = - (4~)~’ (1 + x’) D (1, Q, WC%, W%J rv-Wj (w,) + (2.7) 
0 (rfl-9 (rq * m) 

Differentiating the expansions (2.4) with respect to al, we have 

a,w (9) - - (4~))' (1 + x) 11 + d' h)“l t, 01s) ptl-“Yy,’ @,) 
4w” bl) - - (4lv (1 + x) t1 + d’ hJ21 oz h) P?l-%y*s Nl) + 

4 (1 + x)-l t, (%) Ps-%Y*y (8,)) (Ps + 0) 

(2.8) 

Here the angular parts Y,’ and Y,% are determined by (1.13) just like 0,' and @*= 
were determined by (l.lO), and Yy,y (e) = (0, 0, 2 (2$x sin v,e). We will not give estimates for 
the errors in (2.81, but they can be obtained from (2.4) and (2.5). 

We denote by T, the cylindrical a-neighbourhood of the set T and apply the Betti 
formula in the domain {nE I'I: r,,<O}\Te for the fields W’ and 8, W’ As a result we 
obtain an equality connecting the integrals of the difference a(") (W') r3,wj - ac") (arwj) wj 
over the surface {n E II: r, = 6’) and I~T, n II. We make e vanish and to compute the limits 
of the integrals we use estimates (2.5) and the asymptotic expansions (2.2), (2.7) and (2.4), 
(2.8), respectively. Furthermore, we note that 

Changing to integrals of the first kind over T (with the factor 
we finally obtain the identity 

1 + x’ 
- = 1 tl (@~SQ= 1 tz (%)* ds, + +- 

if% s ts @I$ ds, 
T T T 

1 +d’(Q in (2.8)), 

(2.9) 

3. The Zeading term of the global asylnptotic expansion. From the expansion (1.9) of the 
smooth d solution the matching procedure /7/ determines the behaviour at infinity of the 

K,W + K,WB type boundary layer solution (problem (2.1), (2.2)). In exactly the same way 
the matching of the representation (2.3) with the smooth D(h,z, V,)(d -l-h++...) solution 
determines the asymptotic formula (as r-+0) for LJ. Specifically, the vector function v' 
should be governed by the relations 

L’ (V,) 19 (y) = 0, y E G, \ M; T(@ (9; y) = 0, y E l- U M (3.1) 

u1 (II) = ,=+ e CI (d) Z&r* -xY’ (cp*) + c; + 0 (r& (rf - 0) (3.2) 

The plus and minus signs correspond to the (1,O) and (--1,O) vertices of the crack M. 
In accordance with the definition of the weight functions cl* and 5a* from (3.2) and 
(1.12) we derive 

~9 (y) = z ,z I c,id) KJ&~* (y) (3.3) 

We shall formulate an estimate for the residue in the two-term asymptotic expansion 
obtained; the derivation of this estimate differs very little from /3/ - it is only necessary 
to take into account the appearance of additional singularities, which is done, in part, with 
the help of results from /13/. To simplify the notation we shall only deal with the (1, 0) 
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vertex of the crack. We denote by x a cut-off function in C,-(R) such that x(r)= 0 for 
r > 1/z and x (r) = 1 for ri< '/&, while the asymptotic approximation to the solution of problem 
il.l)-(1.3) is determined by 

V’ (2) = x (h-r)) D (h, z, V,) (0” (y) + hu* (g)) + x (h-r) (c” + hc’, 0) + 

x (r) ,=q, KI W’f”‘h) - (1 - x (h-W) D (h, z, V,) (r%Q’ (cp) + 

hcJ @) r-Y. y’ (d)) 

(3.4) 

We stress that this complicated construction is only necessary to justify the asymptotic 
solution. Thanks to the representations (1.9), (1.12) and (2.3) one can see that vl-D(CP + 
hv’) far from the face zones of the crack and that I"- (CO + he’, 0) + W (KI+W + K,+wB) near 
its right-hand end. Taking the field (3.4) and the solution U of problem (l.l)-(1.3) to 
be governed by the same orthogonality conditions eliminating the arbitrariness in the choice 
of the rigid displacement, we obtain the estimate 

II nr - VI1 II + II nz - V,’ II + h-’ II ns - V,' II + II o (n - VI) II < oh"% (3.5) 

We note that the power of h in (3.5) is smaller than in (1.8). The point is that in 
the case of a smooth contour bounding the middle section of the plate, smooth solutions vl 
and L+ vanish, i.e. the vector function d itself generates a third-order approximation. 
It turns out that the perturbation arising from the singular point of the specified contour 
has order h. In other words, the asymptotic solution of the three-dimensional problem 
contains non-zero terms hvl and h=v=; the latter is included in the residue, which 
"coarsens" estimate '(3.5) relative to (1.8). One could also have determined the VP term: 
the corresponding term h”‘W (3 of the boundary layer is obtained by including expressions 
of orders ;/. and J# in expansions (1.9) and (1.12), respectively. 

We will give some corollaries to relations (3.4) and (3.5). 
1) Suppose U" and U0 are the strain potential energies, and Ah and A, are the work 

of external forces for problems (l.l)-(1.3) and (1.4), (1.5) respectively. Because V= 
D (@ + hv') near r", then from (3.5), (1.7) and (3.31, (1.11) we derive the equalities 

Uh = - ‘/%A’ = - ‘/,h 5 p’ (y) * (u” (y) + hul (g)) ds, + 0 (ha) = 
r 

(3.8) 

hU,-%N~(cr(d)K?rt + cg(d)&) + G(h8) 
f 

2) Suppose A, is a simple eigenvalue of the operator of problem (1.4), (1.5) and Vo is 
the corresponding eigenvector normalized in J% (G). Expansion (1.9) holds for d. It is 
known that the eigenfrequency 00 (h) of longitudinal oscillations of a three-dimensional 
plate with material density y satisfies the estimate I oo(h)- A,%y-K IQ const h. Use of the 
second term of the asymptotic expansion gives a more precise formula for the eigenfrequency: 

00 (h) = Y-” (Ao i- h F ‘=+ a Cj (d) KY*)” + 0 (h”) 

3) Consider the problem if the quasistatic propagation of the cut M". We put M (e) = 
(Y: Y, = “d --f Q yl < 1 -I-.@! M (4 = (5: y, 7 0, I z I < V,h, -1 - hd (h-‘z) < y, < 1 + e + hd (h-‘z)}, 
where is a positive parameter, (i.e. the crack grows on one side and the shape of 
the end zone remains unchanged). We denote by 
plate Gob with crack Mb(e), and by U,,(e) 

Uh(e) the strain potential energy of the 
the potential energy corresponding to the plane- 

stress state of the domain G, with crack M (e), while Kj (e) are the corresponding CSIs. 
Near the edge T+“= {.r;:yz = 0, I z I < ‘l.&, y, = 1 + hd(h-‘z)} the solution u of problem (1.1) - 

(1.3) has the representation 

U(I) = $ [B,(z)@') + K,(z)p'Q"(0)} + (3.7) 
rn=l 

O(P(P- 12 I + ‘l&Fe*-‘4) b-0) 

similar to (2.4). Here p,8 are polar coordinates in the plane crossing the point (1 + hd 
(h-‘z), 0, z) where 1 z 1 < V2h, and perpendicular to the arc T+h, while K,(z) is the CSI. 
Using relations (3.4) and (3.5) one can verify that the estimates 

I K, (z) - t, (h-‘z) K, I + I K, (z) - tp (h-‘z) K, I < const h (‘/,h* - 
,y A-%4 (P = 2, 3) 

(3.8) 
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hold (see (2.5)). 
NOW, Using (2.9) and the well-known Griffith-Irwin formula, we find 

du”/de L = - (W1 S Vi, (1 + X) (K, (z)~ + K, W) + K,(Z)*) ds,= 
h 

- (%4-l h 5 {l/r (1 ;‘x) WI% (rl,)’ + K,% (W + K,*t, (Q) ds, + 

&P) = - (8p)-1 h (1 + x’) (K12 + Ka2) + 0 (h2) 

(?.9, 

The rates of energy release computed according to the three-dimensional and two- 
dimensional Griffith-Irwin formulae are consequently identical to within 0 (hB). 

To improve the residue estimate we apply relation (3.6). We have 

dlJh 

dE e=o 
1 =h~~,~-hZ&&c,(d)~~~(~)~(0)+o(hs) 

The CSI derivatives along the length of the crack are determined in /6, 14/. We recall 
and introduce some notation: K,*= K,*(O) and k,* are the coefficients in expansion (1.9) 
of the vector d near the vertices (&l,O) of the crack M; the Cik+ are the factors Cj, 
in representation (1.12) of the special solutions Lj' of problem (3.1); these solutions 
have singularities of O(FX) at the point (1,O) and are bounded in a neighbourhood of the 
other singular point (--1,O), while the coefficients K,,q = I,2 in expansions of the form 
(1.9) of the vectors Lj+ for r_+O are the Cl*-. We have the relations 

K,+(s) =Kj+ + s @l&j+ + (411))'(1 + x'),s 2 Kp+CL} + G(s') 

Kj_(s)=Kj_+ s (4~))~ (1 + ~')~_+~Kp+Cil + 0 (8") 

Thus 

dll” 

de e* 
= - (8~)~’ (1 + x’) h r, K;, -ha 

,=I. 2 

(3.10) 

(3.11) 

pj+ [I/&j+ + (4~)-‘(1 + x’) 2 Kp+G] + (+)-l(l + x’) Kj_ X 
p=1. a 

2 &+C;j}+ 0(h3) = -h(8p)-1(1 + x’) x 
p=1. 8 

c iKj+ + hcj (d) L(~P)-~ (1 + ~‘1 kj+ + K,+Gf + Kz+‘ZjI + 
,=I, 2 

he, (4 KI-C;, + hc, (4 K,_Cida + 0 W) 

Comparing (3.9) with (3.11), the latter ends with terms of O(h') which come from the 
asymptotic expansion of the CSI K,,,(z) as h-t 0 (see (3.7) and (3.8)). Exactly the same 
formula is obtained if one constructs an h'l*R'(n) term for the boundary layer mentioned after 
estimate (3.5) and uses transformations similar to (3.9). 

4. The "unified probteml* for two-term asymptotic forms. As shown by examples l)-3) of 
Sect.3, when computing various integral characteristics of the stress-strain state of a thin 
cracked plate the boundary layer only plays an intermediary role: the correction term in the 
asymptotic expansions of such characteristics is determined by the second term (3.3) of the 
smooth expansion, which contains only the quantities cl(d) and ez(d) from representation 
(2.3) of the special boundary-layer solutions IV1 and w1. Hence it is reasonable to 
formulate problems in the domain G = G,\ MCR2 whose solutions are identical to 0 (A') 
with the sum d + hv’, where because of the neglect of the three-dimensional boundary layers 
it is sufficient to require that the solutions be identical outside small neighbourhoods of 
the vertices of the crack M. 

1) As is usual in the method of matched asymptotic expansions, the non-leading terms of 
the asymptotic expansion possess non-energy singularities at the irregular boundary points 
(compare (3.3) and (1.12)). Hence one of the possible statements of the problem uniting two 
asymptotic termscanbe the widening of the domain of definition of the operator of problem 
(1.4) and (1.5). Concepts of this kind have been in use for a long time, for example, in 
diffraction problems (the theory of zero radius potentials, see /15, 16/ and others). We 
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will quote the results applicable to problem (1.4) and (1.5) with mass forces f: 

--L' (v,) u(y) = j (y), y E G; r(") (r; Y) = 0, y E aG (4.0 

Let L be an (unbounded) operator in b(G), presecribed by a differential expression 

L'(V,) and having a domain of definition D (L) = {UE Wd' (G): u&-l, 0) = 0 and z(*) (u) = 0 

on (76); this operator is closed and symmetric. Suppose also that Le is the operator given 
by the same differential expression, but with the following domain of definition: 

D tL7 = b : v (VI= W(Y) + ; [x 0.4 co,* + ,=E_ K,, @q (4 5’* (Y) + (4.2) 

x(r+)r&B'(r*))]t WED(L), c&R% &.ER} 

One can verify that the operator L' is a selfconjugate extension of the operator L, 
and that the solution u' of the equation -Led = ~FZ L,(G) is equal to the sum rf'+ hv’, in 
which d E W,r (G) solves problem (4.1), and ti is the vector (3.3). The basic property 
that allows one to give a physical interpretation of the displacement field ue as a "far 
field" is that the quadratic form V,h (L'u, u), computed for the solution d of the above 
equation, is identical with the first two terms of the asymptotic expansion (3.6) of the 
potential energy Uh in the original three-dimensional problem. (This is verified with the 
help of formulae (4.2) and (1.11)). 

21 Consider the problem of a normal separation crack, i.e. assume that the data of 
problem (l-l)-(1.3) are symmetric with respect to the z,Oz, plane. Then Ka =0 and only 
the quantity Cl (d) will appear in formula (3.3). This enables us to introduce a unified 
problem by methods different from 1). 

We first consider the couple stress theory of elasticity with constrained rotation 

PV,VY (Y) + (I” + Y) v,v,-w (y) - 41fZ”@ (v~)_v*v”~ (y) = 0 
a~ (Y) = @ tv,) w (~1, Y E G 

r@' (w; Y) - 41~2~8 (n' (y))V,.V,o (y) = p' (y), n' (y) V,o (y) = 0, y E c?G 

(@ (v,) = -vz way,, --a/+,), 8 w = --‘A (no, +I 

(4.3) 

Here w = (w~,w,) is the displacement vector, 61 is the rotation, m' is the unit 
external normal vector, r (ruf is the same (classical) stress tensor as in (1.51, and 1, the 
couple index, is a small parameter. 

We shall interpret problem (4.3) as a regularly degenerate problem as l-+0 with a 
small parameter for the higher derivatives and use a modification /17/ of the Vishik- 
Lyusternik method /la/. Problem (1.41, (1.5) is a limiting case for (4.3). In the con- 
struction of the asymptotic expansion two boundary layers appear.for the smooth boundary and 
for the angular point. 
w is llS/ of 0 (Es). 

The contribution of the first of these to the asymptotic displacement 
The angular boundary layer is determined 117, 191 by the solution of 

the problem 

pV,V,Z(Q + (p + ~')v,v,z(E)-4~~(v&)v,v,n(5) = 0 

Q (5) = @ (E) 2 (El, 5 E R'\ Am (No = (5 : Ez = 0, El < 0)) 
w2z2 (5) + h'bz (8 = 0, P tag.74 (8 + a,z, (8) - 214w (5) = 

0, a,s (g = 0, E E No (a, = a/q,) 
2 (E) = r$W (Q + 3 (Q-X), 52 (E) = 0 (Q-K) (rt + 0) 

We will make the behaviour of the vector 2 at infinity more precise. 

z (5) = Ft”@ (0,) + nn”g-%Y” (0,) + 0 (Q-n). 

The factor m in the latter formula depends on the Lame parameters h' and u. We match the 
boundary layers l'%Z (--1-r (1 T yr), f E-'y,) with a smooth solution; we obtain the result that 
the second term in the smooth solution is the sum lnfi-,+5r'f lmKacSac, exactly similar to (3.3). 
Thus, if the parameter 1= ~~(~/~ 
of Cl (d)f* 

(small for h-+0) is positive (this depends on the siqn 
then the displacement vector W from problem (4.3) is different from the asymptotic 

approximation v" +hv’ constructed in Sect.3 by a quantity of G (A') 
hoods of the points (*i, 0). In other words, 

outside small neighbour- 
for a special choice of the index 1 the solution 

of the plane couple stress problem (4.3) far from the vertices of the crack contains the next 
term of the asymptotic solution of the three-dimensional problem. 

3) Another way of taking account of asymptotic corrections for normal separation cracks 
consists of changing the length of the "plane projection- M of the crack M'. We put Me = 
{JEER*: y, =O, iyr I< 1 +a}. where R3s is a small parameter, and consider problem (1.41, 
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(1.5) in the domain G,\M,. The asymptotic solution of such.a problem is found, for 
example, in /6/, and far from the points (F-i&s, 0) has the form d +EZ~ +..., with z1 = 

(4p))-' (1 + x') (K,+P+ + &+c*+). Comparison with formula (3.3) gives the value e, = 4ph(1 + 
%')-I Cl (d) for the parameter e, for which the solution of problem (1.4), (1.5) in Go\ MS 
is identical to O(h*) outside small neighbourhoods of the crack vertices with the smooth 
solution u" + Au' + . . . occurring in the representation of the solution of problem (l.l)-(1.3) 

We emphasise that here, unlike in the case of the problem in 2) of Sect.4, there is no 
restriction on the sign of cl(d) - the parameter e can be negative. The length 2 (1 + s*) 
will be called the (asymptotic) effective length of the crack M". 

5. Discussion. 1) We turn our attention to the fact that for a thin cracked plate the 
plane-stress state approximation gives an error of 0 (A) and not 0 (A? 1 as in the case of 
a smooth guiding cylinder Gob. Specifically, the three-dimensional boundary layer for 
the end zones of the crack is not localized in small neighbourhoods and introduces an 0 (A) 
perturbation into the entire stress-strain state of the plate. Within the framework of brittle 
failure such a boundary layer can give rise to additional effects "of order h" not included 
in classical theory. The description of the influence of the boundary layer globally 
throughout the plate has to be conducted one way or the other with the help of displacement 
fields with singularities at the vertices of the crack M (compare parts l)-3) of Sect.4). 
The singularities are not significant in determining the energy balance in the correct 
interpretation of the energy functional (see part 1. of Sect.4): the verticres of the crack 
make additional contributions to the function on account of the cj* terms. 

Thus the application of energy criteria for failure i,s not made any harder in the more- 
accurate model. The use of strain, force and other "local" criteria would perhaps be 
impossible without exhaustive information about the behaviour of the stress-strain state near 

the ends of the crack. However, one finds that statements of problems with these criteria 
are asymptotically equivalent (for small connection zones at the crack aperture, for small 
plasticity zones, etc.) to selfconjugate extensions of the operator of problem (1.4), (l-5), 

similar to (4.2). (The corresponding asymptotic analysis has been performed by many authors, 
but not formulated in this way). Hence, after comparison of the parameters of the self- 
conjugate extension the above criteria also becomes suitable, for example, for a unified 
problem (part 3) of Sect.4). 

2) When changing the profile d of the ends of the crack zone Mh the effective length 
&z,(d) = 2 [I + 4pla (i + x')-' ~1 (d)l of its plane projection may be increased by the growth of the 

factor CL (d), at the same time as its visible length 2[1+ bd ('/*)I (or 211 +hmaxd (qdl) remains 
constant. One can establish that comparison of the strain energies for the two problems 

(1.4) and (1.5) in the domain G, with cracks M,, and M,., corresponding to different 

profiles d1 and da, gives an approximation of order 'JV) to the energy change in the 

three-dimensional problem. 
The following conjecture is natural: during quasistatic motion the crack "selects" a 

profile d such that the coefficient K,(z) is constant for z E [--'/,A, l/,h] (see expansion 
(3.7) where K,= K,=O for normal separation cracks). Estimates (3.8) show that the required 
profile is determined to some order of accuracy by solving the following problem: find a 
function d for which the quantity tl(ns) from representation (2.4) of the solution WI of 

problem (2.1), (2.2) in the domain lI= V\(V): nz= O,\QI<-'/,, ql<d(%)I is constant. There is 
a simple solution only in the case V= 0, when d = 0 and VP(n)= r,,%0,1(8,). We remark that 
the condition tl = const imposes a restriction on the angle a = arctg d' ('ia) + '/,n - it should 

satisfy A (c&Y) = 'i, (see the explanations for formula (2.5)). 
The hypothetical process of quasistatic crack growth splits into two stages: the fracture 

first proceeds along some portions of the edge (establishing the necessary profile form) and 
only then does the growth of the crack reduce to parallel transport of the end zone. The 
first stage is brief, but can be associated with anomalous behaviour at the initiation of 

the crack. 
3) Because the growth of the strain potential energy is expressed in terms of the CSI, 

it should be governed only by the behaviour of the stresses near the moving end of the crack. 
At first glance relation (3.11) contradicts this assertion - the coefficients K+ for the 
fixed vertex of the crack M appear on the right-hand side of (3.11). The explanation is that 

the quantities AI+ and KJ- correspond only to the dominant term of the asymptotic 
expansion of the solution of the three-dimensional problem, while the following term hv' is 
constructed from formula (3.3), taking into account all the singularities of the field .r(ff) 
and the terms in (3.11) containing KI- appear because of the inclusion of the energy 
generated by the field hr(V'). Using equalities (3.10) one can verify that if the leading 
term in the asymptotic expansion is chosen to be the solution u* of problem (1.4), (1.5) in 
a plane domain with a crack of effective length 2%(d). then the discrepancy vanishes: the 
derivative of the energy with respect to the crack length becomes equal to --h(8~)"(l+x')(K,+*)'. 
where A,+* is the CSI for the stresses 7 (LID). 
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